Evolution of UNECE R29

OICA proposal

GRSP Informal Group on Cab Strength - 12 December 2006

Applies to all N vehicles (N1+N2+N3)

2 mandatory tests: frontal impact, roof strength

1 optional test: rear wall

Frontal impact:

Device	Pendulum
Energy	GVW > 7t: 44.1kJ GVW ≤ 7t: 29.4kJ
Impactor	Flat (800 mm width x 2500 mm height)
Arm	Rigid
Overlap	100% overlap

Frontal impact of UNECE R29:

- Based on truck impacting rear of preceding truck
- Accident statistics confirm current impact configuration:
 - Impactor size 2500 x 800 mm
 - Centre of Gravity (CG): 50 mm below R-point
 - Large majority of overlap 75 100 %
- Energy for trucks > 7.5 t GVM could be increased to 50 kJ (+14%) to increase severity and occupant protection
- Any reduction of impactor size would require maintaining current energy level of 44.1 kJ and redefinition of location of impactor (150 mm below R-point) to avoid interaction with lower windscreens

Frontal impact of UNECE R29 (continued):

- For N vehicles ≤ 7.5t GVM, current R29.02 energy level of 29.4 kJ is adequate
- At least for N1 vehicles, approval to UNECE R33 or UNECE R94 should be possible alternative to the manufacturer

Frontal Impact - OICA proposal

- Impactor size 2500 x 800 mm
- Rigid beams for impactor suspension
- CG: 50 mm below R-point
- CG in median longitudinal plane of truck
- N2 > 7.5 t GVM and N3: 50 kJ impact energy
- N2 ≤ 7.5 t GVM and N1: 29.4 kJ impact energy
- At least for N1 vehicles, allow UNECE R33 or UNECE R94 as alternative

Roof strength test

Device	Rigid flat plate
Load	Equal to max load on front axle(s), max 98 kN

Roof strength test of UNECE R29:

- Supposed to represent 180° rollover accident
- Accident statistics confirm rather poor representativity:
 - Omits the pre-phase of a 180° rollover, namely the 90° sequence
 - 90° rollover results in lateral deformation of the cab
 - SAE has developed representative test sequence
- 180° rollover identified in various regions as a major injury causation accident configuration, especially in Europe and USA (but less so in Japan)

180° rollover – OICA proposal

Test 1 - dynamic pre-deformation:

- Rigid platen
- Inclined 20° to the vertical
- Energy level: 17.6 kJ
- Direction of the impact: perpendicular to the longitudinal axis of the cab

180° rollover – OICA proposal (cont'd)

Test 2 – quasi-static load:

- On same cab as test 1
- Rigid platen
- Force = maximum authorised load front axle(s), ≤ 98 kN
- Direction of the load: vertical

Rear wall test

Device	Rigid barrier
Load	1.96 kN per tonne payload

Rear wall test:

- Supposed to represent impact by load shifting forward
- Accident statistics show very few injuries (< 2%)
- Test is irrelevant for most heavy truck configurations (load separated from cab)
- Test is irrelevant for lighter trucks (1-box)
- Test should be deleted altogether and replaced by far more important accident configuration (see below)

OICA proposal – new test

90° rollover with subsequent impact (A-pillar test) – to be included in UNECE R29:

- Represents 90° rollover, with truck subsequently impacting an obstacle (tree, pillar, road bank, ...)
- Accident statistics indicate high frequency of injuries

OICA proposal – new test

90° rollover with subsequent impact (A-pillar test) – to be included in UNECE R29:

Based on Swedish test, with further improvements:

- Steel pendulum ≥ 1,000 kg
- Inclined 45° to vertical, 15° in horizontal XZ plane
- Impact direction: 15° to vehicle longitudinal axis
- Impact energy 30 kJ

OICA proposal – new test

A-pillar test:

Other comments and suggestions

- Current UNECE R29 uses manikin to assess survival space:
 - Uninstrumented Hybrid III 50th percentile male dummy more representative and adequate
- Calculations should be acceptable alternative to physical tests for the 3 impact configurations (front, 90° and 180° rollover)
- Extension of approvals for cabs approved to UNECE R29.02 should remain possible indefinitely

Conclusion

- OICA proposals to revise UNECE R29:
 - Frontal impact (increased energy level)
 - 90° rollover with subsequent impact (new test)
 - 180° rollover (addition of dynamic pre-load)
- OICA proposals represent clear improvement to safety of truck cabs ≥ 7.5 t GVM, based on accident data (Europe, USA, Japan)
- OICA proposals very severe and need adequate transitional provisions:
 - 5 years (minimum) for new approvals
 - Existing cabs cannot meet (re-design would result in new approvals!)
 - Extension of approvals to remain possible
- Current UNECE R29.02 requirements however adequate for lighter trucks
- UNECE R94 should be possible alternative for light trucks

