San Diego, US, 23 Oct. 200

Development of a Biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI 2003)

Atsuhiro Konosu
Japan Automobile Research Institute
Masaaki Tanahashi
Japan Automobile Manufactures Association, Inc

Back Ground

Distributions of Pedestrian Injuries by

Body Region and Country (All Age Groups, AIS 2-6)									
Body Region	USA (1994-1999)	Germany (1985-1998)	Japan (1987-1998)	Australia (1999-2000)	All Contri				
Head	32.7%	29.9%	28.9%	39.3%	31.4%				
Face	3.7%	5.2%	2.2%	3.7%	4.2%				

1.7%

11.7%

3.4%

7.9%

0.0%

9.4%

7.7%

5.3%

Neck

Chest

Abdomen

Pelvis

4.7%

8.6%

4.7%

4.4%

9.2%

1.4%

10.3%

5.4%

6.3%

8.2%

3.1%

10.4%

4.9%

4.9%

8.0%

Relationship between Pedestrian Lower Limb Injuries and Contact Locations

AIS 2-6 USA, Japan, Europe, and Australia		Ages > 15 (Adult)					
Contact Location	Overall	Thigh	Knee	Leg	Foot		
Front Bumper	1.6%	2.9%	7.0%	43.5%	2.9%		
Top surface of bonnet/wing	2.1%	0.3%	0.1%	0.1%	0.2%		
Leading edge of bonnet/ wing	4.7%	3.3%	0.5%	2.4%	0.1%		
Windscreen glass	0.1%			0.1%	0.1%		
Windscreen frame/ A pillars	0.5%	0.1%					
Front Panel	0.9%	0.9%	1.0%	3.2%	0.3%		
Others	0.6%	0.4%	0.5%	2.6%	1.3%		
Sub-Total	10.5%	8.0%	9.1%	52.0%	5.0%		
AIS 2-6	Agon 416 (Child)						
USA, Japan, Europe, and Australia	Ages < 16 (Child)						
Contact Location	Overall	Thigh	Knee	Leg	Foot		
Front Bumper	0.3%	3.0%	0.7%	4.8%	0.2%		
Top surface of bonnet/wing	0.2%						
Leading edge of bonnet/ wing	0.4%	0.7%	0.1%	0.6%			
Windscreen glass	0.1%						
Windscreen frame/ A pillars							
Front Panel		0.5%	0.1%	0.3%			
Others	0.9%	0.5%		1.3%	0.5%		
Sub-Total	1.9%	4.8%	0.9%	7.0%	0.7%		

source: IHRA/PS WG 2001 report

Pedestrian Legform Impactor Test Proposals • EEVC/WG10(1994), and EEVC/WG17 (1998)

- ISO/TC22/SC10/WG2 (2002)

Proposed Pedestrian Legform Impactor

- EEVC/WG10(1994), and EEVC/WG17 (1998)
- -> TRL Pedestrian Legform Impactor (TRL-PLI)
- ISO/TC22/SC10/WG2 (2002)
- -> Only Requirements

Design for TRL-PLI (1994-1996)

Design for TRL-PLI (1998-2000) My Leg is Body Flesh so RIGID? Damper ? **RIGID Thigh Damper** Steel Knee **Bending** Plate **RIGID** Leg

Development of a Biofidelic Pedestrian Legform Impactor

a) JAMA-JARI PLI 2000

b) JAMA-JARI PLI 2002 (Flex-PLI 2002) c) JAMA-JARI PLI 2003 (Flex-PLI 2003)

lexible Pedestrian Legform Impactor (Flex-PLI 2003)

Knee Joint

dynamic response

Thigh/Leg Construction

Bone Core Specification

b) Bone Core for Leg

Material: Glass-Reinforced Plastic (GRP)

Knee Joint Construction

- 1: Knee spring
- 2: Knee cable (lateral ligament)
- 3: Knee cable (cruciate ligament)
- 4: Femoral condyle
- **5: Hard Urethane**
- 6: Tibial plateau
- 7: Tibial condyle

Knee Joint Construction (lateral view)

1: Knee Spring

2: Knee Cable

Flesh Construction

Flesh for Flex-PLI 2003

Flesh for Flex-PLI 2002 (TRL-PLI)

*N*easurement Instrumentation

Thigh/Leg Measurement (Strain)

Thigh/Leg Measurement (Acceleration)

Knee Joint Measurement (Elongation and Compressive Force)

Knee Joint Measurement (Compressive Force)

Biofidelity Evaluation for Flex-PLI 2003

Biofidelity Evaluation for Thigh of Flex-PLI 2003

<u> PMHS (Femur)</u>

Kerrigan et al. 2003

Flex-PLI 2003 (Thigh)

Ram (Mass: 67.8kg, Initial impact speed: 1.0 m/s)

Dynamic Response for Thigh of Flex-PLI 2003

Result of Biofidelity Evaluation for Thigh of Flex-PLI 2003

Biofidelity Evaluation for Leg of Flex-PLI 2003

Kerrigan et al. 2003

Flex-PLI 2003 (Leg)

Ram (Mass: 67.8kg, Initial impact speed: 1.0m/s)

Dynamic Response for Leg of Flex-PLI 2003

Results of Biofidelity Evaluation for Leg of Flex-PLI 2003

Biofidelity Evaluation for Knee Joint of Flex-PLI 2003

PMHS (Knee Joint)

Kerrigan et al. 2003

Flex-PLI 2003 (Knee Joint)

Ram (Mass: 74.5kg, Initial impact speed: 1.4m/s)

Dynamic Response for Knee Joint of Flex-PLI 2003

Results of Biofidelity Evaluation for Knee Joint of Flex-PLI 2003

Conclusions

JAMA-JARI developed a biofidelic PLI (Flex-PLI 2003) Flex-PLI 2003 response is compared with PMHS component tests (Thigh, Leg, Knee Joint). Therefore, the Flex-PLI 2003 has a high possibility to reproduce more proper response in a car-pedestrian impact than that of other PLI.

Flex-PLI 2003 installs sensors in wide range.

Therefore, the Flex-PLI 2003 has a high possibility to conduct more detailed and proper lower limb injury assessment than that of other PLI.

Future work

- PMHS component test data for Thigh, Leg, Knee Join is limited. Therefore, additional PMHS test results are needed for more certain validation.
- The Flex-PLI 2003 is validated in component test, however, assembly level (Thigh-Knee Joint-Leg) validation is also needed.
- Flex-PLI 2003 does not have fibula construction.
 Therefore, the effect should be considered for the leg injury assessment.

Thank you for your attention!