Remarks by the author after the presentation in GRB

- During the public discussion of this presentation, ETRTO and OICA have put forward their concern whether realistic noise values where used in this model (-3 dB tyre is a slick or not; GTI powertrain or not).
- Bilateral discussion after the meeting with several specialists has clarified the misunderstanding.
- Conclusion: the model, used noise values and mathematical conclusions are correct.
- Whether the mathematical conclusion will be translated in acoustical practice, is not agreed upon between OICA and NL.

On the ACEA method, limit values and the demands on noise sources

Will the ACEA method lead to "total allowance" in powertrain noise?

GRB 36; feb 2002

Erik de Graaff

M+P Raadgevende ingenieurs by

NL concerns on powertrain noise

vehicles	covered by
luxury cars	customer demands
GTI's	?
delivery vans	?
trucks	type approval

Questions:

- What is the relation between the noise values in
 - Current ISO 362
 - ACEA proposal (=ISO part 1 proposal)
- Given a set of limits,
 what is the resulting demand and/or allowance for
 - Tyre/road noise
 - Powertrain noise

Step 1: Noise sources of a typical GTI vehicle

Step 2: calculate noise source levels

Step 3: calculate "type approval" values

Input:

ACEA: 70 dB(A)

Tyre: -3 dB(A)

Input:

ACEA: 70 dB(A)

Tyre: -3 dB(A)

Output:

- ISO 362: +1,6 dB(A)
- Powertrain: +4.3 dB(A)

Input:

ACEA: 72 dB(A)

Tyre: -3 dB(A)

Input: • ACEA: 72 dB(A)

Tyre: -3 dB(A)

Output:

- ISO 362: +4.1 dB(A)
- Powertrain: +7.2 dB(A)

Input:

ACEA: 68 dB(A)

Tyre: -3 dB(A)

Conclusions

- A type approval measurement method, which contains both powertrain noise and tyre/road noise, exhibits the possibility to balance both sources in order to obtain a desired level.
- This example illustrates for the ACEA proposal, how a large change in one source (powertrain) can be compensated by a small change in the other source (tyre/road).
- The feasibility to control powertrain noise with this proposal is estimated to be limited compared to the current ISO 362 measurement method
- Adequate limit values might compensate this effect

